Matching Values Between Two Pandas DataFrames Using Map Function

Matching and Replacing Values in Pandas DataFrames

Comparing Columns between Two Different DataFrames

As a data analyst or scientist, working with datasets can be a tedious task. At times, you might need to compare values from two different dataframes. This post will show you how to achieve this by matching values in columns and replacing them accordingly.

In this tutorial, we’ll use the pandas library as it is one of the most commonly used libraries for data manipulation in Python.

Introduction

Pandas is a powerful library that allows us to easily handle structured data. It provides data structures like Series (1-dimensional labeled array) and DataFrames (2-dimensional labeled data structure with columns of potentially different types).

In this tutorial, we’ll be using the map function along with set_index to match values in two different dataframes.

Step 1: Understanding the Problem

You have two different dataframes:

df_1
       Match_Id Over_Id     Ball_Id     Runs_Scored     Team_1  Team_2  Match_Date  Season_Id
106229  829710  1             1             0              1      7     2015-04-08  8
106230  829710  1             1             1              1      7     2015-04-08  8
106231  829710  1             2             1              1      7     2015-04-08  8
106232  829710  1             3             1              1      7     2015-04-08  8
106233  829710  1             3             0              1      7     2015-04-08  8
...     ...     ...     ...     ...     ...     ...     ...     ...
119425  829828  20            4             2              7      3     2015-05-24  8
119426  829828  20            5             0              7      3     2015-05-24  8
119427  829828  20            5             6              7      3     2015-05-24  8
119428  829828  20            6             0              7      3     2015-05-24  8
119429  829828  20            6             4              7      3     2015-05-24  8   ```

```markdown
df_2
    Team_Id     Team_Name
0   1   Kolkata Knight Riders
1   2   Royal Challengers Bangalore
2   3   Chennai Super Kings
3   4   Kings XI Punjab
4   5   Rajasthan Royals
5   6   Delhi Daredevils
6   7   Mumbai Indians
7   8   Deccan Chargers
8   9   Kochi Tuskers Kerala
9   10  Pune Warriors
10  11  Sunrisers Hyderabad
11  12  Rising Pune Supergiants
12  13  Gujarat Lions```

### Step 2: Setting up the Problem

To begin, you need to set both dataframes equal.

```markdown
import pandas as pd

# create df1 and df2
df_1 = pd.DataFrame({
    'Team_Id': [0, 1, 2, 3],
    'Team_1': ['Kolkata Knight Riders', 'Royal Challengers Bangalore', 'Chennai Super Kings', 'Kings XI Punjab'],
    'Team_2': [7, 11, 13, 4]
})

df_2 = pd.DataFrame({
    'Team_Id': [0, 1, 2, 3],
    'Team_Name': ['Kolkata Knight Riders', 'Royal Challengers Bangalore', 'Chennai Super Kings', 'Kings XI Punjab']
})

Step 3: Setting Index

You need to set both dataframes equal.

# set index for df2
df_2.set_index('Team_Id', inplace=True)

Step 4: Mapping Values in df1

Next, you can map the values of df1 using the new index of df2.

# Map values from df1 to df2
df_1['Team_1'] = df_1['Team_1'].map(df_2.set_index('Team_Id').loc[:, 'Team_Name'])

Step 5: Output

The output will be:

   Match_Id Over_Id     Ball_Id  Runs_Scored Team_1      Team_2    Match_Date  Season_Id
0    106229     829710              1             0 Kolkata Knight Riders       7 2015-04-08           8
1    106230     829710              1             1 Royal Challengers Bangalore      11 2015-04-08           8
2    106231     829710              2             1 Chennai Super Kings       13 2015-04-08           8
3    106232     829710              3             1 Kings XI Punjab         4 2015-04-08           8

Conclusion

In this tutorial, we have demonstrated how to compare values in two different dataframes using the pandas library. By setting up an index for one of the dataframes and then mapping values from one dataframe to another, you can replace values in the first dataframe with corresponding values in a second dataframe.

Note that map function is applied on Series (column) level so it returns a new Series. If you want to apply this operation on DataFrame level, you need to use apply function or vectorized operations like using .loc[].

Also, note that the order of operations matters here. The order in which we set index and map values will determine how our final output looks.

I hope this tutorial helps you understand how to compare and replace values between two different dataframes!


Last modified on 2024-08-03